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Homogeneous Self-Dual Algorithms for Stochastic

Semidefinite Programming

Shengping Jin∗ • K. A. Ariyawansa† • Yuntao Zhu‡

Abstract

Ariyawansa and Zhu [3] have proposed a new class of optimization problems termed
stochastic semidefinite programs (SSDPs) to handle data uncertainty in applications
leading to (deterministic) semidefinite programs (DSDPs). For the case where the
event space of the random variables in an SSDP is finite they have also derived a class
of volumetric barrier decomposition algorithms, and proved polynomial complexity
of the short-step and long-step members of the class [2]. When the event space of the
random variables in an SSDP is finite, the SSDP is equivalent to a large scale DSDP
with special structure. Polynomial homogeneous self-dual algorithms [11] are an
important class of algorithms that have been introduced for solving (general) DSDPs.
It is therefore possible to solve SSDPs by applying homogeneous self-dual algorithms
to their DSDP equivalents. However, such algorithms, while polynomial, will still
have high computational complexities in comparison to decomposition algorithms.
In this paper, we show how the special structure in DSDP equivalents of SSDPs
can be exploited to design homogeneous self-dual algorithms with computational
complexities similar to those of volumetric barrier decomposition algorithms.

Keywords: Semidefinite programming, homogeneous self-dual algorithms, compu-
tational complexity, stochastic semidefinite programming.

1 Introduction

Stochastic programming models have been very useful in dealing with data uncertainty
in many applications. Stochastic linear programs were introduced in the 1950s as a
paradigm for dealing with uncertainty associated with data in applications leading to
linear programs. Since then they have been studied extensively [6, 8, 18, 19].

Deterministic semidefinite programs (DSDPs) have been the focus of intense research
during the past 20 years, especially in the context of interior point methods for opti-
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under Grant DAAD 19-00-1-0465 and by Award W911NF-08-1-0530.

‡Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069-7100,
USA. (yuntao.zhu@asu.edu). The work of this author was supported in part by the ASU West MGIA
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mization [1, 10, 13, 16]. DSDPs generalize linear programs and have a wide variety of
applications, especially beyond those covered by linear programs.

More recently, Ariyawansa and Zhu [3] (see also [9]) introduced a new model termed
Stochastic Semidefinite Programs (SSDPs) to handle data uncertainty in applications
leading to DSDPs. In this new model, they combine stochastic programming and
semidefinite programming together so that the uncertainty in data leading to a semidefi-
nite program can be dealt with in the same way that a stochastic linear program handles
uncertainty in data in an application leading to a linear program. At the same time, since
semidefinite programs generalize linear programs, stochastic semidefinite programs are
also a generalization of stochastic linear programs. See [21] for a preliminary collection
of applications of SSDPs.

Ariyawansa and Zhu [2] (see also [9]) have presented a class of volumetric barrier
decomposition algorithms for SSDPs and proved polynomial complexity of the short-
step and long-step members of the class. Their derivation is for the case where the event
space of the random variables in the SSDP is finite. The computational complexity in
terms of the number of arithmetic operations of the short-step and long-step algorithms
in [2] are O(K1.5) and O(K2) respectively, where K is the number of realizations of the
random variables. Another important feature of the algorithms in [2] is that the most
expensive part of the algorithm naturally separates into K subproblems, which allows
efficient parallel implementations.

When the event space of the random variables in an SSDP is finite, the SSDP can
be converted to an equivalent large scale DSDP. Thus such an SSDP can also be solved
by using algorithms for DSDPs on the DSDP equivalent to the SSDP. One such general
purpose DSDP algorithms is the homogeneous self-dual algorithm (see [11]). However,
the computational complexity in terms of the number of arithmetic operations of the
general-purpose homogeneous self-dual algorithm on the DSDP equivalent of an SSDP
is O(K4.5). In the context of SSDPs, K is large, and so O(K4.5) is significantly larger
than O(K1.5) and O(K2), the complexities of the short-step and long-step algorithms
respectively in [2].

In this paper, we propose homogeneous self-dual algorithms for SSDPs (with finite
event spaces of their random variables) that exploit the special structure of the equiva-
lent DSDP to reduce the computational complexity to O(K1.5). In addition, the most
expensive part of the algorithm separates into K subproblems.

In general, algorithms for stochastic optimization belong to two broad categories both
exploiting their special structure but in two different ways. First, we have algorithms
based on notions of cutting planes and decomposition. The classical L-shaped algorithm
in [17], the volumetric center cutting plane algorithm in [4], and the decomposition
algorithms in [20], [9] and [2] belong to this category. Second, we have algorithms
designed by tailoring the operations in general purpose algorithms to exploit the special
structure in stochastic optimization problems. The algorithms in [12, 7, 5] belong to
this category. The algorithms derived in this paper for SSDPs also belong to this second
category.

The rest of the paper is organized as follows. In the next section we introduce our
notation and present some preliminary material on the homogeneous self-dual methods
for solving DSDPs. We present our homogeneous self-dual algorithms for SSDPs in §3.
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In §4 we present an efficient method that exploits the structure of the DSDP equivalent
of an SSDP for computing search directions in homogeneous self-dual methods. We also
obtain an estimate of the number of arithmetic operations per iteration of our algorithm
in §4. We conclude the paper in §5 where we compare the computational complexities
of the new algorithms presented in this paper with those of the algorithms in [2].

2 Preliminaries

2.1 Notation and terminology

The notation and terminology we use in the rest of this paper follow that in [13]. We
let R

m×n and R
n∨n denote the vector spaces of real m × n matrices and real symmetric

n × n matrices respectively. We write X º 0 (X ≻ 0) to mean that X is positive
semidefinite (positive definite) and we use U º V or V ¹ U to mean that U − V º 0.
For U, V ∈ R

m×n we write U • V := trace (UTV ) to denote the Frobenius inner product
of U and V .

Given Ai ∈ R
n∨n for i = 1, 2, . . . , m, we define the operator A : R

n∨n −→ R
m by

AX =











A1 • X
A2 • X

...
Am • X











, (1)

for any X ∈ R
n∨n.

The adjoint operator of A with respect to the standard inner products in R
n∨n and

R
m is the operator A∗ : R

m −→ R
n∨n defined by

A∗y =
m

∑

i=1

yiAi, (2)

for any y ∈ R
m.

We introduce the useful notation Kronecker product P ⊛ Q, where P and Q are
usually symmetric. This is an operator from R

n∨n to itself defined by

(P ⊛ Q)U =
1

2
(PUQT + QUPT), (3)

for any U ∈ R
n∨n.

Finally we introduce the operator svec which transforms a matrix in R
n∨n to a vector

in R
n̄ (see [14]) where n̄ := 1

2n(n + 1).

2.2 Homogeneous Self-Dual Methods for DSDPs

Given data Ai ∈ R
n∨n for i = 1, 2, . . . , m, b ∈ R

m and C ∈ R
n∨n, a DSDP in primal

standard form is defined as

minimize C • X
subject to AX = b

X º 0,
(4)
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where X ∈ R
n∨n is the variable. The dual of (4) is

maximize bTy
subject to A∗y + S = C

S º 0,
(5)

where y ∈ R
m and S ∈ R

n∨n are the variables.
We briefly review the homogeneous interior point algorithm for DSDPs as in [11].

The homogeneous model for (4, 5) is as follows:

AX −bτ = 0
−A∗y −S +τC = 0

−C • X +bTy −κ = 0.
(6)

It is easy to show from (6) that

X • S + τκ = 0.

The main step at each iteration of the homogeneous interior point algorithm (shown
below in Algorithm 1) is the computation of the search direction (∆X,∆y, ∆Z) from
the symmetrized Newton equations with respect to an invertible matrix P (which is
chosen as a function of (X, y, S)) defined by:

A∆X −b∆τ = ηrp

−A∗∆y −∆S +∆τC = ηRd

−C • ∆X +bT∆y −∆κ = ηrg

κ∆τ +τ∆κ = γµ − τκ
E∆X +F∆S = γµI − HP (XS)

(7)

where rp := bτ−AX, Rd := A∗y+S−τC, rg := C•X−bTy+κ, µ := [1/(n+1)](X•S+τκ),
η and γ are two parameters, HP : R

n∨n −→ R
n∨n is the symmetrization operator defined

by

HP (U) :=
1

2
(PUP−1 + (P−1)TUTPT),

and E : R
n∨n −→ R

n∨n and F : R
n∨n −→ R

n∨n are the linear operators defined by

E := P ⊛ (P−1)TS; F := PX ⊛ (P−1)T,

respectively.
Currently, the most common choices of symmetrization for search directions in prac-

tice are as follows [15].

1. Helmberg-Rendel-Vanderbei-Wolkowicz/Kojima-Shindoh-Hara/Monteiro (HKM) di-
rection, corresponding to P := S1/2. In this case, we have that E = I and
F = X ⊛ S−1.

2. Kojima, Shindoh, and Hara (KSH) direction (rediscovered by Monteiro), corre-
sponding to P := X−1/2. In this case, we have that E = S ⊛ X−1 and F = I.
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3. Nesterov-Todd (NT) direction, corresponding to P := H−1/2, here H is the unique
symmetric positive definite matrix satisfying HXH = X, which can be calculated
by

H = X1/2
(

X1/2SX1/2
)−1/2

X1/2.

In this case, we have E = I and F = H ⊛ H.

Lemma 1. Suppose that X ≻ 0, S ≻ 0, and A1, A2, . . . , Am are linearly independent.
Then for each of the above three choices of P , E−1 and F−1 exist, and E−1F and F−1E
are positive definite and self-adjoint.

Proof. See [13].

We state the generic homogeneous algorithm as in [11].

Algorithm 1 Generic Homogeneous Self-Dual Algorithm for Solving (4, 5)

(X, y, S, τ, κ) := (I, 0, I, 1, 1)
while a stopping criterion is not satisfied do

choose η, γ
compute the solution (∆X, ∆y, ∆S, ∆τ, ∆κ) of the linear system (7)
compute a step length θ̄ so that
X + θ̄∆X ≻ 0,
S + θ̄∆S ≻ 0,
τ + θ̄∆τ > 0, and
κ + θ̄∆κ > 0
(X, y, S, τ, κ) := (X, y, S, τ, κ) + θ̄(∆X, ∆y, ∆S, ∆τ, ∆κ)

end while

3 Homogeneous Self-Dual Algorithms for SSDPs

3.1 Definition of a SSDP in Primal Standard Form

As in [3], we define a SSDP with recourse in primal standard form based on deterministic
data W0i

∈ R
n0∨n0 for i = 1, 2, . . . , m0, h0 ∈ R

m0 and C0 ∈ R
n0∨n0 ; and random data

Bi(ω) ∈ R
n0∨n0 , Wi(ω) ∈ R

n1∨n1 for i = 1, 2, . . . , m1, h(ω) ∈ R
m1 and C(ω) ∈ R

n1∨n1

that depend on an underlying outcome ω in an event space Ω with a known probability
function P. Given this data, a SSDP with recourse in primal standard form is

minimize C0 • X0 + E [Q (X0, ω)]
subject to W0X0 = h0

X0 º 0,
(8)

where X0 ∈ R
n0∨n0 is the first-stage decision variable, Q (X0, ω) is the minimum of the

problem
minimize C(ω) • Y (ω)

subject to B(ω)X0 + W(ω)Y (ω) = h(ω)
Y (ω) º 0,

(9)
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where Y (ω) ∈ R
n1∨n1 is the second-stage variable, and

E [Q (X0, ω)] =

∫

Ω
Q (X0, ω) P(dω). (10)

When the event space Ω is finite, Problem (8, 9, 10) is equivalent to a DSDP. The
equivalent DSDP has a special block angular structure which is exploited to reduce the
computational complexity.

3.2 Solving SSDPs with Finite Event Space

We consider SSDP (8, 9, 10) when the event space Ω is finite. Let {(Ck,Bk,Wk, hk), k =
1, 2, . . . , K} be the possible values of the random variables (C(ω),B(ω),W(ω), h(ω))
and let pk be the corresponding probabilities for k = 1, 2, . . . , K. For convenience, let
Ck := pkCk for k = 1, 2, . . . , K. Then Problem (8, 9, 10) is equivalent to

minimize C0 • X0 + C1 • X1 + · · · + CK • XK

subject to W0X0 = h0

B1X0 + W1X1 = h1
...

. . .
...

BKX0 + WKXK = hK

X0, X1, · · · XK º 0

(11)

where X0 ∈ R
n0∨n0 and Xk ∈ R

n1∨n1 for k = 1, 2, . . . , K are the first-stage and second-
stage variables respectively.

Problem (11) is a DSDP in primal standard form. To see this, first let

C := diag(C0, C1, . . . , CK) ∈ R
(n0+Kn1)∨(n0+Kn1),

X := diag(X0, X1, . . . , XK) ∈ R
(n0+Kn1)∨(n0+Kn1),

and
hT :=

[

hT

0 , hT

1 , . . . , hT

K

]

∈ R
m0+Km1 .

Next for i = 1, 2, . . . , (m0 + Km1), define Ai ∈ R
(n0+Kn1)∨(n0+Kn1) by

Ai := diag(W0i
, 0, . . . , 0), i = 1, 2, . . . , m0

Am0+i := diag(B1i
, W1i

, 0, . . . , 0), i = 1, 2, . . . , m1
...

...
Am0+(K−1)m1+i := diag(BKi

, 0, . . . , 0, WKi
), i = 1, 2, . . . , m1.

Then (11) becomes

minimize C • X
subject to Ai • X = hi, i = 1, 2, . . . , (m0 + Km1)

X º 0.
(12)

Problem (12) is same as (4) if we set n := (n0 + Kn1) and m := (m0 + Km1).
So Problem (11) is a DSDP in primal standard form with block diagonal structure.
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Algorithms that exploit this special structure is especially important when K is large as
is the case in typical applications.

The dual of (11) is

maximize hT

0 y0 + hT

1 y1 + · · · + hT

KyK

subject to W∗y0 + B∗
1y1 + · · · + B∗

KyK + S0 = C0

W∗
1y1 + S1 = C1

. . .
...

W∗
KyK + SK = CK

S0, S1, · · · SK º 0,

(13)

where y ∈ R
(m0+Km1) and Sk ∈ R

(n0+Kn1)∨(n0+Kn1) for k = 1, 2, . . . , K are the variables.
Now the homogeneous interior point method can be applied to Problem (11, 13).

However, the size of Problem (11, 13) increases as K increases. In practice K is typically
very large. So in practice, the Problem (11, 13) is large-scale and the computation of the
search direction in Algorithm 1 (i.e. the solution of the system 7) is very expensive. As
we shall see in the next section, this computational work can be reduced significantly by
exploiting the special structure of Problem (11, 13). The method we describe in the next
section for the computation of the search direction has an additional desirable feature:
it decomposes into K smaller computations that can be performed in parallel.

4 An Efficient Method for Computing Search Directions

We now describe a method for computing the search direction in Algorithm 1 that
exploits the special structure in (11, 13).

The homogeneous model (6) for Problem(11, 13) is

W0X0 − h0τ = 0
BkX0 + WkXk − hkτ = 0, k = 1, 2, . . . , K

−W∗
0y0 −

∑K
k=1 B

∗
kyk + τC0 − S0 = 0

−W∗
kyk + τCk − Sk = 0, k = 1, 2, . . . , K

∑K
k=0 hT

k yk −
∑K

k=0 Ck • Xk − κ = 0
Xk º 0, Sk º 0, k = 0, 1, 2, . . . , K, τ ≥ 0, κ ≥ 0,

(14)

where W∗
k and B∗

k for k = 1, 2, . . . , K are adjoint operators in the sense of (2) with
appropriate dimensions.

The search direction system corresponding to (14) can be derived via (7) as

W0∆X0 − h0∆τ = ηrp0

Bk∆X0 + Wk∆Xk − hk∆τ = ηrpk
, k = 1, 2, . . . , K

−W∗
0∆y0 −

∑K
k=1 B

∗
k∆yk+

∆τC0 − ∆S0 = ηRd0

−W∗
k∆yk + ∆τCk − ∆Sk = ηRdk

, k = 1, 2, . . . , K
E0∆X0 + F0∆S0 = γµI0 − HP0

(X0S0)
Ek∆Xk + Fk∆Sk = γµIk − HPk

(XkSk), k = 1, 2, . . . , K
κ∆τ + τ∆κ = γµ − τκ
∑K

k=0 hT

k ∆yk −
∑K

k=0 Ck • ∆Xk − ∆κ = ηrg,

(15)
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where
rp0

= h0τ −W0X0

rpk
= hkτ − BkX0 −WkXk, k = 1, 2, . . . , K

Rd0
= W∗

0y0 +
∑K

k=1 B
∗
kyk + S0 − τC0

Rdk
= W∗

kyk + Sk − τCk, k = 1, 2, . . . , K

rg = κ −
∑K

k=0 hT

k yk +
∑K

k=0 Ck • Xk

µ = 1
n0+Kn1+1(

∑K
k=0 X0 • S0 + τκ),

η and γ are two parameters, and Ek,Fk and HPk
are linear operators which depend only

on Xk and Sk.
Now we present the crux of our method for finding the search direction as a solution

to (15). By the sixth equation of (15) and the fact that F−1
k for k = 1, 2, . . . , K exist,

we have

∆Sk = −F−1
k Ek∆Xk + F−1

k (γµIk − HPk
(XkSk)), k = 1, 2, . . . , K. (16)

Substituting (16) into the fourth equation of (15), we get

−W∗
k∆yk + ∆τCk + F−1

k Ek∆Xk = ηRdk
+ F−1

k (γµIk − HPk
(XkSk)) (17)

for k = 1, 2, . . . , K. Since E−1
k exist, we have (F−1

k Ek)
−1 = E−1

k Fk, for k = 1, 2, . . . , K.
By equation (17), for k = 1, 2, . . . , K, ∆Xk can be expressed as

∆Xk = E−1
k FkW

∗
k∆yk − E−1

k Fk(∆τCk + ηRdk
) + E−1

k (γµIk − HPk
(XkSk)). (18)

Substituting (18) into the second equation of (15), we have

Bk∆X0 + Wk(E
−1
k FkW

∗
k∆yk − E−1

k Fk(∆τCk + ηRdk
) + E−1

k (γµIk − HPk
(XkSk)))

−hk∆τ = ηrpk
, k = 1, 2, . . . , K.

(19)
Thus

∆yk = M−1
k Bk∆X0 + qk∆τ + νk (20)

where

Mk = WkE
−1
k FkW

∗
k

qk = M−1
k (WkE

−1
k Fk + hk)

νk = M−1
k (ηrpk

− ηWkE
−1
k FkRdk

−WkE
−1
k (γµIk − HPk

(XkSk))),

(21)

for k = 1, 2, . . . , K.
By the fifth equation of (15) and the fact that F−1

0 exists, one gets

∆S0 = −F−1
0 E0∆X0 + F−1

0 (γµI0 − HP0
(X0S0)). (22)

We substitute (20) and (22) in the third equation of (15) to get

−W∗
0∆y0 −

∑K
k=1 B

∗
k(−M−1

k Bk∆X0 + qk∆τ + νk) + ∆τC0 + F−1
0 E0∆X0

−F−1
0 (γµI0 − HP0

(X0S0)) = ηRd0
.

(23)
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From (23) we have

∆X0 = M−1
0 (W∗

0∆y0 + (
∑K

k=1 B
∗
kqk − C0)∆τ)

+M−1
0 (

∑K
k=1 B

∗
kνk + ηRd0

+ F−1
0 (γµI0 − HP0

(X0S0)))

= M−1
0 W∗

0∆y0 − T0∆τ + U0,

(24)

where
M0 = F−1

0 E0 +
∑K

k=1 B
∗
kM

−1
k Bk

T0 = M−1
0 (C0 −

∑K
k=1 B

∗
kqk)

U0 = M−1
0 (

∑K
k=1 B

∗
kνk + ηRd0

+ F−1
0 (γµI0 − HP0

(X0S0))).

(25)

Now substituting (24) into the first equation of (15), we have

W0(M
−1
0 W∗

0∆y0 − T0 + U0) − h0∆τ = ηrp0
. (26)

From (26) and the fact that W0M
−1
0 W∗

0 is nonsingular (this will be discussed in detail
later in §5), we have that

∆y0 = (W0M
−1
0 W∗

0 )−1((W0T0 + h0)∆τ + ηrp0
+ W0U0

= α0∆τ + β0,
(27)

where
α0 = (W0M

−1
0 W∗

0 )−1(W0T0 + h0)

β0 = (W0M
−1
0 W∗

0 )−1(ηrp0
−W0U0).

(28)

Now we substitute backwards. First we substitute (27) in (24) to get

∆X0 = M−1
0 W∗

0 (α0∆τ + β0) − T0∆τ + U0

= Ψ0∆τ + Φ0,
(29)

where
Ψ0 = M−1

0 W∗
0α0 − T0

Φ0 = M−1
0 W∗

0β0 + U0.
(30)

Substituting (29) in (20), we obtain

∆yk = −(WkE
−1
k FkW

∗
k)−1Bk(Ψ0∆τ + Φ0) + qk∆τ + νk

= αk∆τ + βk,
(31)

where
αk = −(WkE

−1
k FkW

∗
k))−1BkΨ0 + qk

βk = −(WkE
−1
k FkW

∗
k))−1BkΦ0 + νk

(32)

for k = 1, 2, . . . , K. Furthermore, we substitute (31) in (18) to get

∆Xk = E−1
k FkW

∗
k(αk∆τ + βk) − E−1

k Fk(∆τCk + ηRdk
) + E−1

k (γµIk − HPk
(XkSk))

= Ψk∆τ + Φk, k = 1, 2, . . . , K,
(33)

where
Ψk = E−1

k FkW
∗
kαk − E−1

k FkCk

Φk = E−1
k FkW

∗
kβk − E−1

k FkηRdk
+ E−1

k (γµIk − HPk
(XkSk)).

(34)
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for k = 1, 2, . . . , K. Now, we substitute (27), (29), (31) and (33) in the last equation of
(15). By the seventh equation of (15) this yields

K
∑

k=0

hT

k (αk∆τ + βk) −

K
∑

k=0

Ck • (Ψk∆τ + Φk) −
1

τ
(−κ∆τ + γµ − τκ) = ηrg.

Finally ∆τ is given by

∆τ =
τηrg + τ

∑K
k=0(Ck • Φk − hT

k βk) + (γµ − τκ)

τ
∑K

k=0(h
T

k αk − Ck • Ψk) + κ
. (35)

All the other directions can be obtained by (35). Once all the directions are computed,
we can iterate to the next point in Algorithm 1.

5 Complexity Analysis

In this section we first show that under reasonable conditions the operations described
above are valid. Then we estimate the computational complexity of Algorithm 1 with the
method described in §4 applied on Problem (11, 13). Finally, we compare and compare
that complexity to the complexity of Algorithm 1 applied on Problem (11, 13) treating
it as a generic primal-dual DSDP pair.

5.1 Validation of Computations

We assume that W
(1)
0 , W

(2)
0 , . . . , W

(m0)
0 , and W

(1)
k , W

(2)
k . . . , W

(m1)
k for k = 1, 2, . . . , K are

linearly independent. Then Mk for k = 1, 2, . . . , K in 21) are nonsingular and positive
definite by Lemma 1.

Now we will show that M0 in (25) is nonsingular and that W0M
−1
0 W∗

0 is also non-
singular.

Lemma 2. Suppose that W
(1)
0 , W

(2)
0 , . . . , W

(m0)
0 and that W

(1)
k , W

(2)
k . . . , W

(m1)
k are lin-

early independent for k = 1, 2, . . . , K. Then M0 in (25) and W0M
−1
0 W∗

0 are positive
definite.

Proof. From (25) we have

M0 = F−1
0 E0 +

∑K
k=1 B

∗
kM

−1
k Bk.

We have that F−1
0 E0 is positive definite by Lemma 1, so it suffices to show that B∗

kM
−1
k Bk

is positive semidefinite for k = 1, 2, . . . , K. In fact, denoting

BkU =
[

B
(1)
k • U, B

(2)
k • U, . . . , B

(m1)
k • U

]T

for each U ∈ R
n0∨n0 and M−1

k =
[

φ
(k)
ij

]

m1×m1

, we have

B∗
kM

−1
k BkU = B∗

k

[

φ
(k)
ij

]

m1×m1

[

B
(1)
k • U, . . . , B

(m1)
k • U

]T

=
∑

i

∑

j(φ
(k)
ij B

(j)
k • U)B

(i)
k
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for k = 1, 2, . . . , K. So

B∗
kM

−1
k BkU • U =

∑

i

∑

j(φ
(k)
ij B

(j)
k • U)B

(i)
k • U

= (BkU)TM−1
k (BkU) ≥ 0.

The last inequality is due to the fact that M−1
k is positive definite. As in [13] we can

then show that W0M
−1
0 W∗

0 is positive definite. This completes the proof.

5.2 The Complexity Analysis

Theorem 1. Suppose that m1 = m0, n1 = n0 and that W
(1)
k , W

(2)
k , . . . , W

(m0)
k are lin-

early independent for k = 0, 1, . . . , K. By utilizing method described in §4 for computing
the search directions in Algorithm 1, we have that the number of arithmetic operations
in each iteration of Algorithm 1 is O(K(m3

0 + m2
0n

4
0) + n6

0).

Proof. The dominant computations of the method in §4 occur at (21), (25), (28), (30),
(32) and (34). The corresponding numbers of arithmetic operations of these computa-
tions are listed in Table 1. In particular, the computation in (25) will be analyzed in de-
tail. The total number of arithmetic operations is dominated by O(K(m3

0 +m2
0n

4
0)+n6

0)

Table 1: Complexity Estimates for Dominant Steps in Method of §4

Equation Number Estimate of the Number
of Computation of Arithmetic Operations

(21) O(K(m3
0 + m0n

3
0))

(25) O(Km2
0n

4
0 + n6

0)
(28) O(m2

0n
2
0 + m3

0)
(30) O(m0n

2
0)

(32) O(m2
0n

2
0 + m3

0)
(34) O(m0n

2
0)

for all three choices of P indicated in §2.2.
To analyze the work of computation (25), we let

svec(B∗
kM

−1
k BkU) = svec(

∑

i

∑

j(φ
(k)
ij B

(j)
k • U)B

(i)
k )

=
∑

i

∑

j(φ
(k)
ij B

(j)
k • U)svec(B

(i)
k )

=
∑

i

∑

j φ
(k)
ij (svec(B

(j)
k )Tsvec(U))svec(B

(i)
k )

=
∑

i

∑

j φ
(k)
ij (svec(B

(i)
k )svec(B

(j)
k )T)svec(U).

So matrix M0 = F−1
0 E0 +

∑K
k=1 B

∗
kM

−1
k Bk in R

n0∨n0 is given by

H0 +
K

∑

k=1

m0
∑

i=1

m0
∑

j=1

φ
(k)
ij (svec(B

(i)
k )svec(B

(j)
k )T), (36)

where H0 is F−1
0 E0, which depends on different choices of symmetrization for search

directions. The number of arithmetic operators in (36) is O(Km2
0n

4
0+n6

0). This completes
the proof.
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If we use a generic homogeneous algorithm such as the one in [14], then the number of
arithmetic operations required to compute the search directions for (11, 13) is O(mn3 +
m2n2 + m3), where n = (n0 + Kn1) and m = (m0 + Km1). Setting m1 = m0 and
n1 = n0 and substituting n = (1 + K)n0 and m = (1 + K)m0) in O(mn3 + m2n2 + m3),
we have that the complexity of such a generic method of computing the search directions
is O(K4(m0n

3
0 + m2

0n
2
0) + K3m3

0). This is much larger than the complexity O(K(m3
0 +

m2
0n

4
0) + n6

0) obtained for the method in §4 when K ≫ m0 and K ≫ n0.
It has been shown in [11] that if Problem (11, 13) has a solution, then the KSH

method is globally convergent. The algorithm finds an optimal solution or determines
that the primal-dual pair has no solution of norm less than a given number in at most
O(n1/2L) iterations, where n is the size of the problem and L is the logarithm of the
ratio of the initial error and the tolerance. So by using the method in §4 for computing
the search direction with KSH symmetrization, the complexity of Algorithm 1 in terms

of the total number of arithmetic operations is O(K3/2(m3
0n

1/2
0 + m2

0n
9/2
0 ) + K1/2n6

0). In
comparison, the short- and long-step decomposition algorithms of Ariyawansa and Zhu
[2] have complexities of O(K3/2) and O(K2) respectively in terms of the total number
of arithmetic operations.

We note that the efficient computation of the Schur computation matrix Mk in (21)
is crucial as this is the most expensive step in each iteration where usually 80% of the
total CPU time is spent if the algorithm in [15] is used. However, in each iteration,
each Mk can be computed independently, and so distributed processing may be used to
achieve substantial reductions in computation time.

6 Concluding Remarks

In this paper, we have given a homogeneous self-dual algorithm for Stochastic Semidefi-
nite Programming. Being a homogeneous self-dual algorithm it does not require the user
to provide a starting point. Finding a starting point may be difficult for SSDP prob-
lems. We have also developed an efficient method for calculating the search directions
which can take advantage of parallel and distributed processing. A worst-case bound on
the number of arithmetic operations for our algorithm has been obtained. This bound
shows that the complexity of our algorithm is similar to that of volumetric decomposition
algorithms described in [2].
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[9] S. Mehrotra and M. G. Özevin. Decomposition-Based Interior Point Methods
for Two-Stage Stochastic Semidefinite Programming. SIAM J. of Optimization,
18(1):206–222, 2007. (An earlier draft of this paper appeared under the title “Two-
State Stochastic Semidefinite Programming and Decomposition Based Interior Point
Methods: Theory,” IEMS Technical Report 2004-16, Department of Industrial En-
gineering and Management Sciences, Northwestern University, Evanston, IL, in De-
cember 2004.)

[10] Yu. E. Nesterov and A. S. Nemirovski. Interior Point Polynomial Algorithms in
Convex Programming. SIAM Publications. SIAM, Philadelphia, PA, USA, 1994.

[11] F. Potra and R. Sheng. On homogeneous interior-point algorithms for semidefinite
programming. Optim. Methods Softw., 9:161–184, 1998.

[12] B. Straziky. Some results concerning an algorithm for the discrete recourse problem.
In Stochastic Programming, ed. M. Dempster, Academic Press, London. 263–274,
1980.

[13] M. J. Todd. Semidefinite Optimization. ACTA Numerica, 10:515–560, 2001.

[14] M. J. Todd, K. C. Toh, and R. H. Tütüncü. On the Nesterov-Todd direction in
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